Assignment 4

1. Show that for every $f \in C[0, \pi]$ satisfying $f(0)=f(\pi)=0$ and $f^{\prime}(x)$ exists for all $x \in[0, \pi]$ and $f^{\prime} \in R[0, \pi]$, the inequality

$$
\int_{0}^{\pi}|f|^{2} \leq \int_{0}^{\pi}\left|f^{\prime}\right|^{2}
$$

holds. Can you characterize the case of equality in this inequality?
2. Consider the class of curves
$\left.\left\{\gamma \in C^{1}[0,1]: \gamma(0)=(0,0), \gamma(1)=(b, 0), b>0, \gamma_{2}(t)>0, \forall t \in(0,1)\right\}, \int_{0}^{1} \sqrt{\gamma_{1}^{\prime 2}(t)+\gamma_{2}^{\prime 2}(t)} d t=\pi\right\}$.
Show that $A \leq \pi / 2$ where A is the area enclosed by the curve γ and the line segment from the origin to $(b, 0)$. Can you characterize the optimal case? This "half" isoperimetric problem is called the Dido's problem.
3. Draw the unit metric balls centered at the origin with respect to the metrics d_{2}, d_{∞} and d_{1} on \mathbb{R}^{2}.
4. Show that $d(x, y)=\left|e^{x}-e^{y}\right|$ defines a metric on \mathbb{R}.
5. Define d on $\mathbb{Z} \times \mathbb{Z}$ by $d(n, m)=2^{-d}$, where d is the largest power of 2 dividing $n-m \neq 0$ and set $d(n, n)=0$. Verify that d defines a metric on \mathbb{Z}.
6. Let f be a C^{1}-function defined on the plane and consider the surface $\Sigma=\{(x, y, f(x, y)$: $\left.(x, y) \in \mathbb{R}^{2}\right\}$. For every two points p and q on Σ, a C^{1}-piecewise, continuous curve connecting p and q is a continuous function $\gamma:[0,1] \mapsto \Sigma$ such that its three components γ_{1}, γ_{2} and γ_{3} are continuous and C^{1}-piecewise. Use these curves to define a notion of the distance between p and q on Σ and show that it really defines a metric on Σ.
7. For a metric space (X, d), define $m(x, y)=\min \{d(x, y), 1\}$. Show that m is again a metric. Moreover, a sequence converges in d if and only is it converges in m.
8. Show that whenever d is a metric defines on X, then

$$
\rho(x, y) \equiv \frac{d(x, y)}{1+d(x, y)}
$$

is also a metric on X. A sequence converges in d if and only if it converges in ρ.
9. Give an example of two inequivalent metrics which have the same concept of convergence. Hint: Work on \mathbb{R} and consider the previous examples.
10. Show that d_{2} is stronger than d_{1} on $C[a, b]$ but they are not equivalent. Hint: Construct a sequence $\left\{f_{n}\right\}$ in $C[0,1]$ satisfying $\left\|f_{n}\right\|_{1} \rightarrow 0$ but $\left\|f_{n}\right\|_{2} \rightarrow \infty$ as $n \rightarrow \infty$.
11. Show that a function f from (X, d) to (Y, ρ) which is continuous at x_{0} if and only if for each $\varepsilon>0$, there exists some δ such that $\rho\left(f(x), f\left(x_{0}\right)\right)<\varepsilon$ whenever x satisfies $d\left(x, x_{0}\right)<\delta$.
12. Consider the functional Φ defined on $C[a, b]$

$$
\Phi(f)=\int_{a}^{b} \sqrt{1+f^{2}(x)} d x
$$

Show that it is continuous in $C[a, b]$ under both the $d_{1^{-}}$and $d_{\infty^{-}}$distances. A real-valued function defined on a space of functions is traditionally called a functional.
13. Consider the functional Ψ defined on $C[-1,1]$ given by $\Psi(f)=f(0)$. Show that it is continuous in the d_{∞} - but not in the d_{1}-metric. Suggestion: Produce a sequence $\left\{f_{n}\right\}$ with $\left\|f_{n}\right\|_{1} \rightarrow 0$ but $f_{n}(0)=1, \forall n$.
14. Let A be a non-empty set in (X, d) and define

$$
d(x, A) \equiv \inf \{d(x, y): y \in A\} .
$$

Show that

$$
|d(x, A)-d(y, A)| \leq d(x, y), \quad x, y \in X,
$$

that is, $x \mapsto d(x, A)$ is "Lipschitz continuous" with Lipschitz constant 1 in X.
15. Let A and B be two sets in (X, d) satisfying $d(A, B)>0$ where

$$
d(A, B) \equiv \inf \{d(x, y):(x, y) \in A \times B\}
$$

Show that there exists a continuous function f from X to $[0,1]$ such that $f \equiv 0$ in A and $f \equiv 1$ in B. This problem shows that there are many continuous functions in a metric space.

